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Abstract 
Automatically controlled irradiance (Ci) laboratory 

weathering (lightfastness) instruments were first introduced in 
1970. The technology has since become universally used. Today, 
virtually all lightfastness standards specify irradiance control, 
and all major manufacturers of lightfastness instruments currently 
offer instruments that feature a version of irradiance control. 
Until now, controlled irradiance devices have been limited to 
maintaining and providing irradiance data at, or about, a single 
wavelength or wavelength range. With the introduction of Atlas 
Material Testing Technology’s proprietary on-board, real-time 
full spectrum monitoring (FSM) system, the complete spectral 
power distribution (SPD) of the light source can now be 
displayed. 

History And Evolution Of Light In Weathering 
And Lightfastness Tests 

As the name obviously implies, light is the most important 
aspect of natural and simulated lightfastness tests. Numerous 
excellent studies of it’s importance to the can be found in industry 
literature. 
The first, fairly crude, laboratory weathering tests employed 
carbon arc lamps as the solar simulator. Instruments using xenon 
arc light sources, which are inherently superior solar simulators, 
eventually succeeded such devices. Figure 1 shows a comparison 
of solar radiation and filtered xenon spectra. 

Figure 1. Comparison of spectral power distribution of natural sunlight and 
filtered xenon. 

 
As with other light sources, the output of a xenon arc will 

vary with electrical input power, the stability of its enclosure and 
surrounding optical filters. The filters will generally tend to 
degrade or solarize with use. The combination of these variables 

will adversely affect the quality and quantity of light that impinges 
upon test specimens. 

Resulting variations in light output will also cause 
unreliability in test results, given its importance to the 
lightfastness phenomenon. The control irradiance feature which is 
designed to automatically hold the output at one wavelength range 
constant throughout a test, is intended to maintain the irradiance, 
especially that in the ultraviolet range, thereby mitigating the 
negative impact of variable light on test results. This feature, 
which was introduced by Atlas Material Testing Technology LLC 
in 1970 represented a significant step at the time, and has since 
served the weathering community well. All major manufacturers 
of weathering instruments currently offer instruments that feature 
a version of irradiance control. 

However, controlled irradiance technology, which, in 
principle, is very similar regardless of supplier, is not without 
some notable weaknesses. It provides information only at the 
single wavelength  (or wavelength range) for which it is 
configured. Secondly, the systems have little or no flexibility. The 
user, for the most part, is restricted to controlling and monitoring a 
test at the wavelength which had been pre-selected and which may 
only be changed to another single wavelength (range) by tedious 
hardware reconfigurations often requiring complex recalibration. 

Full Spectrum Monitoring (FSM) 
The introduction of the Full Spectrum Monitoring (FSM) 

system is the first major innovation for light control in laboratory 
weathering instruments in thirty years. It is meant to address the 
weaknesses associated with standard controlled irradiance, as well 
as to provide researchers the critical spectral data now being 
demanded by progressive weathering methodologies and 
approaches.  

In contrast to with current technology which controls and/or 
monitor fixed, single, discrete portions of the xenon spectrum, the 
Full Spectrum Monitoring (FSM) system permits control of any 
single user-selected wavelength, or any user-selected wavelength 
range, while monitoring and collecting data at all other 
wavelengths in the 250-800nm range. The many implications of 
this capability are discussed later. 

The system, which is fully integrated in an Atlas Weather-
Ometer®, is meant to be used on a full time basis. As such, it is 
necessarily designed to be robust, to withstand the inherently 
hostile environment in, and around weathering instruments.   
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Figure 2. Graphical display of the lightfastness chamber interior. CCD array 

spectroradiometer is mounted below the test chamber. 

Detailed specifications are proprietary, but in general the 
FSM system is comprised of a CCD array spectroradiometer with 
one nanometer resolution over a range of 250 – 800 nm, including 
order-sorting filters to ensure appropriate stray light rejection. 
Figure 2 shows the mounting of the input optics in the weathering 
chamber.  The input optics system incorporates a sealed robust 
cosine receiver and patented quartz diffuser. An on-board 
industrial computer manages the system with customized software 
for system calibration, data management and user interface. 

Comparison of FSM and Conventional 
Spectroradiometer: 

ASTM G-138-03, Calibration of a Spectroradiometer Using 
a Standard Source of Irradiance [1] has become the normative 
standard for the calibration of spectroradiometers. A traditional 
spectroradiometer requires typically several pieces of hardware to 
comply with the ASTM standard, including a NIST-traceable 
irradiance standard, a calibrated digital voltmeter, a calibrated 
current shunt, wavelength calibration source, very stable power 
supply, etc. After calibration is complete, spectral irradiance 
measurements in a Weather-Ometer® are done as in situ in the 
weathering chamber.  Both steps require a skilled operator.  

Comparisons have been made between a standard 
spectroradiometer and the system used in the FSM configuration. 
The standard spectroradiometer (in this case, an Optronic 
Laboratories OL754) was calibrated by the ASTM procedure and 
set-up to make measurements in situ as described in the previous 
paragraph.  The FSM was calibrated by its unique and proprietary 
technique. The FSM was used to make measurements immediately 
following the OL 754’s measurement of different filter 
combinations, in the same Weather-Ometer and under identical 
conditions. 

For each xenon filter combination, the spectral power 
distribution plots measured and produced by each system are 
virtually indistinguishable. In each case, numerical data at selected 
wavelengths and wavelength ranges also show excellent 
agreement for repeated, alternating measurements. See Figure 3 as 
a comparison between the two measurements. Numerical outputs 
of the two systems are shown at the bottom of the figure. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 3. Comparison of conventional spectroradiometer output with FSM 

system 

FSM Capabilities 

User Selected Control Points 
Current instruments are limited to controlling irradiance at a 

predetermined wavelength, or wavelength range that is likely not 
to coincide with a test material’s critical wavelength(s). Critical 
wavelengths are those at which a material demonstrates 
heightened sensitivity to light. In addition, a lamp undergoing 
temporal changes not captured by a single-wavelength-monitoring 
system will compound the problem. This has implications for 
repeatability and reproducibility.  For example, replication of 
current tests that monitor and integrate irradiance data at non-
critical wavelengths will indicate that the tests are identical. 
However, assuming there are changes to the lamp (there always 
are – small and gradual for the most part) at the critical 
wavelengths not “seen” by current instrumentation, true radiant 
dosage replication, where it matters most, is not accomplished.  
The flexibility of FSM system allows unprecedented utilization of 
activation spectra data, to control and monitor tests at material-
specific critical wavelengths to ensure more repeatable and 
reproducible tests. 

It should be made clear that the selection of a control 
wavelength coincident with a material’s critical wavelength does 
not limit testing to a single type of material. For while it is only 
possible to control at a single wavelength or range, since the full 
spectrum is available, data may be monitored and accrued at any 
other wavelength(s). 

Photometric Monitoring And Control 
In the photo imaging industry for example, lightfastness tests 

are required to maintain specified lux values, which for current 
instrumentation meant costly re-engineering of the controlled 
irradiance system. By contrast, systems with FSM could, through 
its software, automatically produce the lux value by convolution 
of its spectral irradiance measurements and the known 
photometric, “standard observer” weighting curve.  

Input optics 
sealed cosine 
receiver 

Specimen 
rack 

Auxiliary 
filter  
lantern 

Xenon 
lamp 

Output - FSM 

Output – OL - 754 



Performance-based Specifications 
The trend towards performance-based weathering test 

specifications over the recent years has meant the elimination of 
any technical information or features relating to a specific 
instrument. The more traditional “hardware-based” standards 
specifically names by manufacturer’s nomenclature, the type of 
xenon filters required for the desired results of the test. By 
contrast, performance-based standards show allowable irradiance 
ranges, in spectral bands, as indicated in Figure 4, taken from SAE 
J2412, Accelerated Exposure of Automotive Interior Trim 
Components Using a Controlled Irradiance Xenon Apparatus. [2] 

Figure 4. Example of allowable irradiance ranges in a performance-

based specification. 

 
But for a few laboratories that may occasionally measure 

their instrument’s SPD, there is currently no independent means of 
verifying and demonstrating to an auditor, or customer, for 
example, that the requirements are met. 

The FSM is capable of generating tables of irradiance to 
ensure beginning (of test), and ongoing compliance to 
performance-based requirements.  The user may configure the 
table’s wavelength bands as he sees fit; to be consistent with that 
in a given specification, for example.  

Filter Identification and Aging Criteria 
The fact that each filter set has a unique (range of) UV 

transmittance is used to identify each filter set to the user. 
Thereby, eliminating or significantly reducing, the potentially 
disastrous use of incorrect filters. Similar software features are 
used to identify when a lamp assembly or filter set approaches the 
end of its useful life. Utilizing their own knowledge and 
experience, individual users may choose their own “end of useful 
life” criteria based on sample sensitivity or tolerance for 
confidence level in the test result.    

Summary 
The Full Spectrum Monitoring system for laboratory 

instruments represents a significant step forward for the 
management of light, the most critical component of photo-
degradation. It can be a tool to serve leading edge researchers as 
they endeavor to refine service life prediction calculations. The 
FSM feature can also benefit everyday users wishing to realize 

more repeatable and reproducible tests, or to demonstrate 
compliance with performance-based test methods.  
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bandpass mean
std 

deviation minimum maximum
lower 95% 
conf. Limit

upper 
95% conf. 

Limit

250-260 0.00 0.00 0.00 0.00 0.00 0.00
261-270 0.00 0.00 0.00 0.00 0.00 0.00
271-280 0.00 0.00 0.00 0.01 0.00 0.00
281-290 0.02 0.02 0.00 0.11 0.00 0.06
291-300 0.19 0.10 0.03 0.55 0.00 0.38
301-310 0.77 0.21 0.32 1.46 0.35 1.18
311-320 1.91 0.21 1.31 2.68 1.49 2.33
321-330 3.39 0.13 2.96 3.97 3.12 3.65
331-340 4.92 0.06 4.68 5.11 4.80 5.03
341-350 6.24 0.09 5.80 6.40 6.06 6.43
351-360 7.40 0.22 6.66 7.82 6.97 7.84
361-370 8.58 0.41 7.56 9.82 7.76 9.39
371-380 9.25 0.60 8.09 11.36 8.04 10.45
381-390 9.92 0.89 8.39 13.71 8.15 11.69
391-400 11.88 1.44 9.64 18.57 8.99 14.76
300-400 64.31 3.57 57.79 78.96 57.16 71.45

 Irradiance in W/m2  for Xenon-Arcs with Daylight Filters Normalized to 
Exactly 0.55 W/m2 at 340 nm
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